RECENT PROGRESS IN HEEL-STRIKE GENERATORS USING ELECTROACTIVE POLYMERS

Ron Pelrine
Roy Kornbluh
SRI International

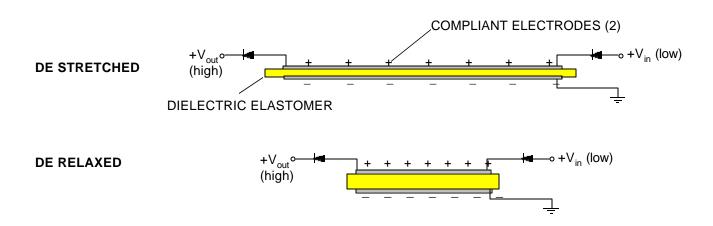
Project Goals and Milestones

- Demonstrate and establish dielectric elastomer (DE) generator technology
- Develop and demonstrate a suitable DoD application i.e. a heel-strike generator
- Explore other DoD generator applications where DE technology would be advantageous
- Some specific milestones:
 - demonstrate energy production using DE generator (May 1999)
 - demonstrate 1 W boot generator (end of Phase I; May 2000)
 - demonstrate 2.5 W boot generator (end of Phase II)

Heel-Strike Generator

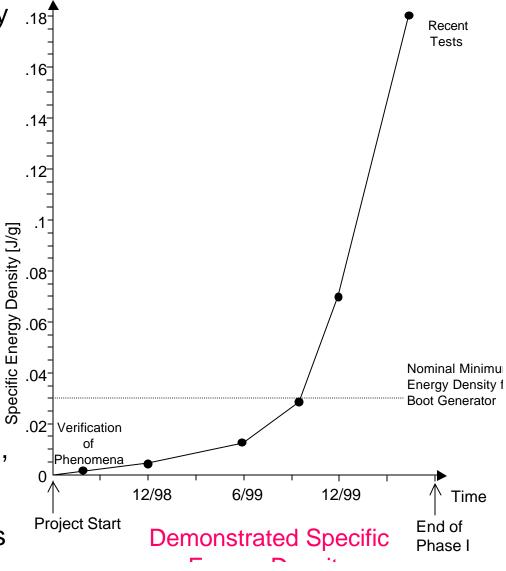
Backpack Generator

Heel-Strike Generator - Available Power and Applications

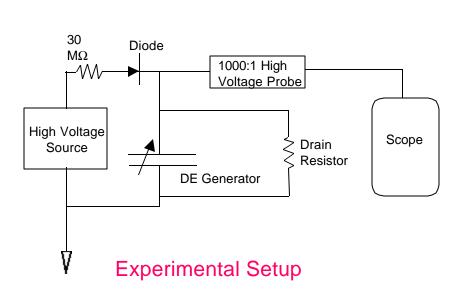

- Maximum estimated output depends on mechanical assumptions
 - assume 1000 N force acting over 2-4 mm stroke
 - boot and shoe data indicate 35% 65% of the energy is returned as elastic rebound energy
 - best estimates indicate 0.7 2.6 J are available for conversion per step
 - other factors may increase the estimate; e.g. backpack weight, optimized designs, secondary sources such as shoe flexures
 - conversion losses are probably the most significant in derating the available power to the actual power output; typical estimate is 1-2 W
- Boot-specific and general purpose
 - boot-specific applications use and/or store power locally; examples:
 - inertial navigation
 - emergency backup power; emergency transponders
 - many "blue sky" applications
 - general purpose power for the soldiers' radios, computers, etc.
 - requires a convenient, UNOBTRUSIVE, means for transmitting power to belt batteries

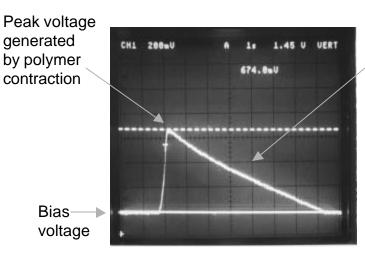
Heel-Strike Generator - General Requirements

- Critical that added weight be zero or negligible
 - boot heel volume is roughly 150 cc's
 - derate to 80 cc's for generator; assume 60 cc's for polymer, and 20 cc's for electronics (strawman parameters)
 - polymer densities typically 1 g/cc; some air volume needed for expansion/contraction of polymers; electronic density probably around 2-3 g/cc overall depending on specifics
- Generator must be quiet
 - no acoustic noise
 - no electromagnetic noise
- Other specs
 - rugged
 - waterproof
 - low cost


Approach: Dielectric Elastomer Generators

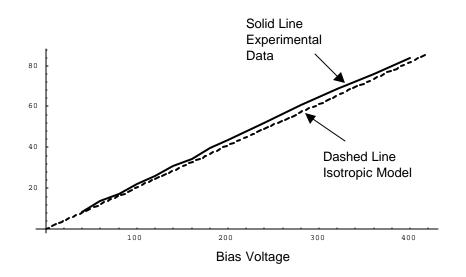
- Energy is generated due to a change in the capacitance as the film is stretched
 - $E = \frac{1}{2} Q_0^2 (1/C_f 1/C_i)$
 - nearly incompressible polymers increase in area and decrease in thickness when stretched

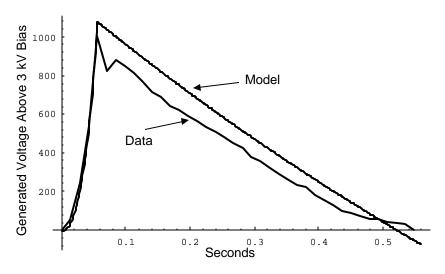

Why Dielectric Elastomer Generators?


- High theoretical specific energy densities, over 1.5 J/g
- Low cost materials
- High potential efficiencies and coupling factors
- Compliance offers interesting load coupling advantages for many applications; can be operated with little or no leverage between input stroke and material strain
- Low leakage losses;
 resistivities typically 10¹⁴ 10¹⁵
 ohm-cm
- Can be operated as high strain, low pressure actuators; may offer interesting active control and smart structure capabilities

Experimental Setup

- Mechanical setup to allow pre-set strains between expanded and contracted states
- Electrical setup to measure voltage changes
 - can also use to measure currents through known resistors
 - non-contact electrostatic voltmeter (EV) used to measure leakage directly (no high voltage probe)



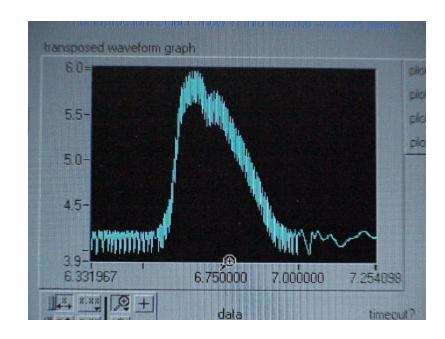

Gradual decay through drain resistor back to bias voltage

Example Data

Model Comparison

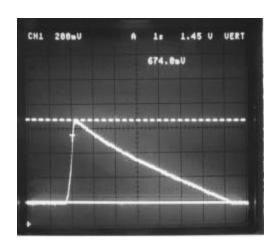
 Demonstrated good agreement between measured output and model output

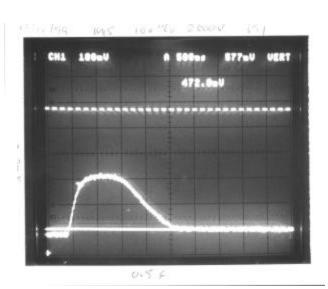
Comparison Between Model and Data Using Different Bias Voltages


Time Domain Comparison Between Model and Data at 3 kV Bias and Draining Through a 500 $M\Omega$ Resistor

New DE Materials

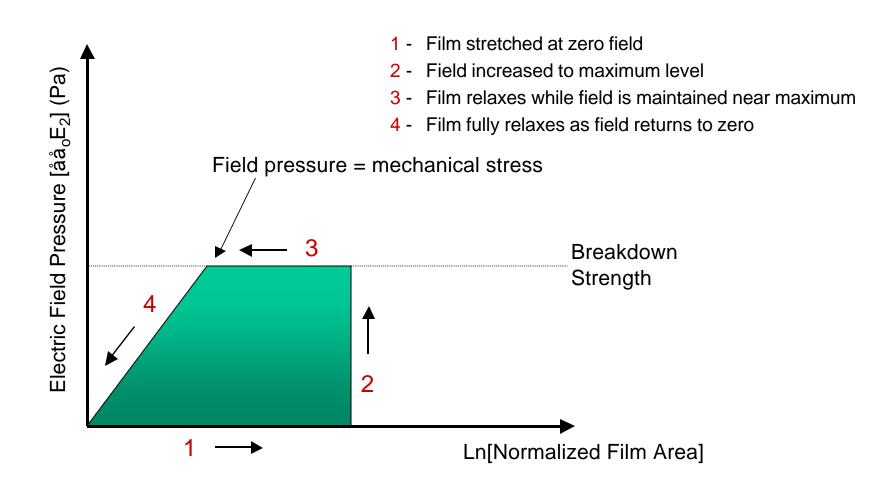
New elastomer materials


- higher breakdown strengths; up to 400 V/μm
- higher dielectric constants 4.8 (vs. 2.8 for silicone)
- actuator tests indicate over 3 J/g energy density
- acceptable viscoelastic losses and resistivity


Data indicating 0.18 J/g energy density using new elastomers (input bias: 4.2 kV output: 5.8 kV)

Experimental Verification of Higher Efficiency Regime

- Field pressures need to be comparable to mechanical stresses in boot generator
 - lower field pressures generally indicates poor conversion efficiency
 - boot generator needs to have some rebound energy
 - experimental signature is a rounded voltage output at higher bias


1000 V bias

2000 V bias

Electronics

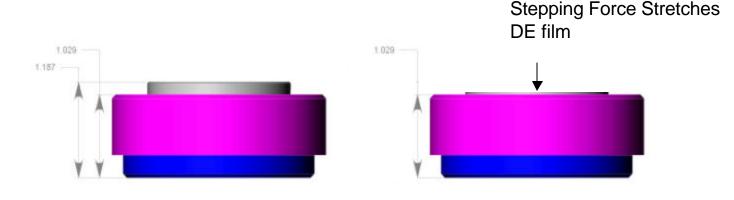
- Relatively high voltages are needed to maximize energy density while keeping the film thickness reasonable
- General sequence:
 - (1) film is stretched
 - (2) electrical energy is placed on film in stretched state
 - (3) film contracts
 - (4) electrical energy is removed from film in contracted state
 - energy may be removed during contraction, or added during stretching
 - critical that most of the electrical energy be removed prior to stretching; otherwise, material acts as an actuator and converts mechanical-toelectrical energy, reducing the generator's energy density

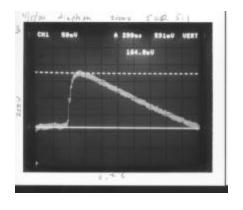
Example: Potential Cycle for DE Generator

Step-up Conversion

- Step-up voltage for charging is not a major issue
 - designs exist where step-up only needs to supply initial charging and offset leakage
 - step-up only needs to supply 5-10% of total output power in some designs
 - even low efficiency step-up can have minimal impact on overall efficiency
 - commercial step-up converters exist in sugar-cube size up to 5 kV

Step-down Conversion


- Two approaches are being investigated:
 - inverter
 - commercial converters in series
- Commercial converters for stepping down 350 V to 5 V
 - used in series arrangement to step down virtually any voltage
 - not appropriate in long term because of size
 - significant transient losses
 - currently a backup approach


Inverter Approach

- Switch high voltage DC through a step-down transformer
 - transformer and high voltage switch are critical components
 - high frequencies typically used (e.g. 10-100 kHz)
- Small transformers tested up to 800 V with 75-80% step-down efficiency
 - up to about 20 W output
 - voltage currently limited by equipment
- Single transistors up to 1600 V
 - can be cascaded for higher voltage if needed
 - we have demonstrated 5 kV switching (rise time<1 μs; fall time 20 μs)

Mechanical Design

- Many different mechanical designs have been investigated
- Higher performing materials allow simpler, lower risk mechanical designs
 - less film is needed.

Preliminary data: 2000 V bias, 2800 V output

Summary

- Dielectric elastomers are a promising new generator technology for lightweight, high energy density generators and actuators
- Good material performance has been demonstrated
- Focus is on heel-strike generators a good match between properties and application
 - other generator applications are also attractive, e.g. backpack and conventional generator applications
 - electronics focus is on step-down inverter (primary approach) and commercial converters (backup approach)
 - simple mechanical design has been completed and initial testing begun

